Industrial 3-Port Fast Ethernet Media Converter Switches

KSD-103-A series
KSD-103-B series

Installation Guide

(C) 2008 KTI Networks Inc. All rights reserved. No part of this documentation may be reproduced in any form or by any means or used to make any directive work (such as translation or transformation) without permission from KTI Networks Inc.

KTI Networks Inc. reserves the right to revise this documentation and to make changes in content from time to time without obligation on the part of KTI Networks Inc. to provide notification of such revision or change.

For more information, contact:

United States KTI Networks Inc.
P.O. BOX 631008

Houston, Texas 77263-1008

Phone: 713-2663891
Fax: 713-2663893
E-mail: kti@ktinet.com
URL: http://www.ktinet.com/

International Fax: 886-2-26983873
E-mail: kti@ktinet.com.tw
URL: http://www.ktinet.com.tw/

The information contained in this document is subject to change without prior notice. Copyright (C) All Rights Reserved.

TRADEMARKS

Ethernet is a registered trademark of Xerox Corp.

FCC NOTICE

This device complies with Class B Part 15 the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received including the interference that may cause.

Ce notice

Marking by the symbol indicates compliance of this equipment to the EMC directive of the European Community. Such marking is indicative that this equipment meets or exceeds the following technical standards:

EMC Class B

EN 50081-1/1992 :EN55022:1994/A1:1995/A2:1997 Class B
EN61000-3-2:2000
EN61000-3-3:1995/A1:2001
EN 55024:1998/A1:2001
IEC 61000-4-2:1995
IEC 61000-4-3:1995
IEC 61000-4-4:1995
IEC 61000-4-5:1995
IEC 61000-4-6:1996
IEC 61000-4-8:1993
IEC 61000-4-11:1994

Table of Contents

1. Introduction 5
1.1 Features 6
12 Product Panels 6
1.3 Specifications. 7
2. Installation 10
2.1 Unpacking 10
2.2 Safety Cautions 10
2.3 DIN-RailMounting 11
2.4 Panel Mounting 12
2.5 Applying Power 13
2.6 Failure Alarm Relay Output 14
3. Making LAN Connections 16
4. 1 Making Copper Port (RJ-45) Connections 16
3.2 Making Fiber Connections 16
3.3 LED Indication 17
5. Applications 18
4.1 Application in Industrial Networks 18
4.2 Copper to Fiber Bridging Media Converter Application 18
4.3 Bridging Multimode to Single Mode Fiber Converter Application 18
6. Appendix 19
5.1 Model Definition. 19
5.2 Optical Specifications 20

1. Introduction

The industrial rated KSD-103 Fast Ethernet switch series supports three switching-base segment communications and benefit the following applications and make fiber deployment easier :

- Copper to fiber bridging converter
- Multimode fiber to single mode fiber bridging converter
- Fiber cable extender
- Cascaded fiber networking

Depending on the types of the network ports, two different model series are defined as follows:

Model	Copper Port (RJ-45)	Fiber Port
KSD-103-A	2 ports	1 port
KSD-103-B	1 port	2 ports

The switch also provide the following advantages:

Plug and Play

No configuration is required in using the switches. With the featured auto-negotiation function, the switches can detect and configure the connection speed and duplex automatically for the copper ports. The switches also provide auto MDI/MDI-X function, which can detect the connected cable and switch the transmission wire pair and receiving pair automatically. This auto-crossover function can simplify the type of network cables used.

Industrial Features

For industrial environment, the devices are designed with the following enhanced features exceeding that of commercial Ethernet switches:

- High and wide operating Temperature
- Power input interface: Industrial screw terminal block and DC power jack for external commercial power adapter as option
- Screw panel and DIN rail mounting support for industrial enclosure
- Industrial-rated Emission and Immunity performance

1.1 Features

- Provide 3 switching-base network segments
- Auto MDI/MDI-X crossover function on the TP copper port
- Support IEEE 802.3x flow control for full-duplex operation
- Support Back-pressure flow control for half-duplex operation
- Wide operating temperature range for temperature critical environment
- Support DIN-rail mounting and panel mounting
- Provide two power input types to meet more application needs
- Accept wide power input voltage range for application flexibility
- Industrial-rated Emission and Immunity performance

1.2 Product Panels

The following figure illustrates the faces of the switches:
KSD-103-A

1.3 Specifications

Copper Ports

Compliance
Connectors
Pin assignments
Configuration
Transmission rate
Duplex support
Network cable

Fiber Ports

Connectors	ST, SC, VF-45, Bi-Directional SC (model dependent)
Configuration	100Mbps, Full duplex
Network cables	MMF $50 / 12560 / 125 \mu \mathrm{~m}$, SMF $9 / 125 \mu \mathrm{~m}$
Eye safety	IEC 825 compliant
Far end fault support	Enabled

Switch Functions

MAC Addresses Table 1 K entries

Forwarding \& filtering Non-blocking, full wire speed
Switching technology Store and forward
Maximum packet length 1536 bytes max.

Flow control	IEEE $802.3 x$ pause frame base for full duplex operation
	Back pressure for half duplex operation
Broadcast Storm	Protection design

DC Power Interface

Interface	Screw-type terminal block
	1. Two pairs for power wire cascading
	2. One pair for alarm relay output
DC Jack (-D6.3mm/+D2.0mm)	
Operating voltages	$+7 \mathrm{~V} \sim+50 \mathrm{~V}(+5 \%)$
Power consumption	KSD-103-A
	2.1 W max. @+7.5VDC input, 3.5 W max. @+50VDC input
	KSD-103-B
	3.3 W max. @+7.5VDC input, 4 W max.@+50VDC input

DIP SW
KSD-103-A
SW1 Broadcast storm protection setting
SW2 Fiber port FX link down alarm setting
KSD-103-B
SW1 Broadcast storm protection setting
SW2 Fiber port FX1 link down alarm setting
SW3 Fiber port FX2 link down alarm setting

Mechanical

Dimension (base) W 28mm x D 82mm x H 95mm
Weight
Housing
250 g

Mounting support DIN-rail mounting, Panel mounting

Environmental

Operating temperature $\quad-20^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$
Storage temperature $\quad-20^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$
Relative humidity $5 \% \sim 90 \%$

Certificate

FCC

Part 15 Class B
CE/EMC EMI EN50081-1 Class B
EMS EN55024
CE/LVD Safety EN 60950

EN 50081-1/1992:
EN55022:1994/A1:1995/A2:1997
EN61000-3-2:2000
EN61000-3-3:1995/A1:2001

EN 55024:1998/A1:2001
IEC 61000-4-2:1995 ESD Test
IEC 61000-4-3:1995 RS Test
IEC 61000-4-4:1995 EFT/BURST Test
IEC 61000-4-5:1995 Surge Test
IEC 61000-4-6:1996 CS Test
IEC 61000-4-8:1993 Magnetic Field
IEC 61000-4-11:1994 Voltage Int. Dips

2. Installation

2.1 Unpacking

Check that the following components have been included:

- Information CD
- The device unit
- DIN-rail mounting bracket

If any item is found missing or damaged, please contact your local reseller for replacement.

The following are available optional accessories:

- Panel Mounting Bracket

The bracket is used for mounting the device on a panel surface.

- Commercial-rated AC power adapters:
- Rated input AC120V/60Hz, AC230V/50Hz, AC100V/50-60Hz, AC240V/50Hz
- Rated output DC7.5V 1A, DC7.5V 1.2A
- High temperature AC power adapters:
- Rated $-10^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}, \mathrm{AC} 100-240 \mathrm{~V} / 50-60 \mathrm{~Hz}$ DC12V 1 A for USA and Germany

The adapters are used for supplying DC power to the switchvia DC power jack interface.

2.2 Safety Cautions

To reduce the risk of bodily injury, electrical shock, fire, and damage to the product, observe the following precautions.

- Do not service any product except as explained in your system documentation.
- Opening or removing covers may expose you to electrical shock.
- Only a trained service technician should service components inside these compartments.
- If any of the following conditions occur, unplug the product from the electrical outlet and replace the part or contact your trained service provider:
- The power cable, extension cable, or plug is damaged.
- An object has fallen into the product.
- The product has been exposed to water.
- The product has been dropped or damaged.
- The product does not operate correctly when you follow the operating instructions.
- Do not push any objects into the openings of your system. Doing so can cause fire or electric shock by shorting out interior components.
- Operate the product only from the type of external power source indicated on the electrical ratings
label. If you are not sure of the type of power source required, consult your service provider or local power company

2.3 DIN-Rail Mounting

In the product package, a DIN-rail bracket is installed on the device for mounting the device in a industrial DIN-rail enclosure.

The steps to mount the device onto a DIN rail are:

1. Install the mounting bracket onto the device unit as shown below:

2. Attach bracket to the lower edge of the DIN rail and push the unit upward a little bit until the bracket can clamp on the upper edge of the DIN rail.
3. Clamp the unit to the DIN rail and make sure it is mounted securely.
4. Make sure that there are proper heat dissipation from and adequate ventilation around the device.

The final mechanical dimensions after installing DIN rail mounting bracket are:

2.4 Panel Mounting

The product is provided with an optional bracket for panel mounting. The bracket supports mounting the device on a plane surface securely. The mounting steps are:

1. Install the mounting bracket on the device unit. Screw the bracket on the device unit.

2. Screw the device unit on a panel. Make sure that there are proper heat dissipation from and adequate ventilation around the device. Do not place heavy objects on the device.

The screw locations and final dimension are shown below:

2.5 Applying Power

The power specifications of the device are:

Operating Voltage $\quad+7 \sim+50 \mathrm{VDC}$
Power Consumption 4W max. @+50VDC

Using Terminal Blocks

Either DC1 interface or DC2 interface can be used to receive DC power from an external power system. Or, DC2 also can be used to deliver the power received on DC1 to next device in cascading way.

DC1	+ Vdc Positive $(+)$ terminal
DC1	-Vdc Negative (-) terminal
DC2	+ Vdc Positive (+) terminal
DC2	-Vdc Negative ($(-)$ terminal

Three 2P terminal plugs are provided together with the device. Two of the three plugs are used for DC 1 and DC 2 interfaces respectively. The plug is shown below:

$$
\text { Power wires: } 24 \sim 12 A W G \text { (IEC } 0.5 \sim 2.5 \mathrm{~mm}^{2} \text {) }
$$

Install the power source wires with the plug properly. Screw the wire with plug securely. Then, plug in DC 1 contacts.

If cascading the power to next device is needed, install the power wires and plug for another switch. Then, use DC2 contacts.

Note: Only up to four device units can be cascaded to receive power from one main power input source.

Using DC Power Jack

DC Jack Connector:

AC Power Adapters: Optional power adapters are available for purchasing.

Connect power adapter DC plug to the DC power jack of the converter before connecting to the AC outlet. Connect the power adapter to the AC outlet.

Note: Before you begin the installation, check the AC voltage of your area. The AC power adapter that is used to supply the DC power for the unit should have the AC voltage matching the commercial power voltage in your area.

2.6 Failure Alarm Relay Output

The device provides a relay output to report failure events to a remote alarm monitoring system. The replay output is provided with two contacts labeled $\mathbf{P F}+$ and $\mathbf{P F}$ - in the terminal block interface.

Use the provided 2P terminal plug for signal wiring and plug into the $\mathrm{PF}+/-$ contacts.

| Relay Output |
| :--- | :---: | :--- |
| Indication |\quad Normal | $\mathrm{PF}+$ and PF- contacts shorted |
| :--- |
| |

Alarm Events:

- Input power failure
- Specific fiber port link down (To specify the fiber ports, use the DIP SW located on bottom.)

DIP SW setting

Fiber port link down alarm

KSD-103-A

SW1	ON	Enable broadcast storm protection
	OFF	Disable broadcast storm protection
SW2	ON	Enable FX port link down alarm
	OFF	Disable FX port link alarm

KSD-103-B

SW1	ON	Enable broadcast storm protection
	OFF	Disable broadcast storm protection
SW2	ON	Enable FX1 port link down alarm
	OFF	Disable FX1 port link alarm
SW3	ON	Enable FX2 port link down alarm
	OFF	Disable FX2 port link alarm

Note: Be sure the voltage applied on PF+/- contacts is within the specification of 30VDC/1A max. or 120VAC/0.5A max.

3. Making LAN Connections

3.1 Making Copper Port (RJ-45) Connections

The copper ports support the following connection types and distances:

Network Cables

10BASE-T: 2-pair UTP Cat. 3,4,5 , EIA/TIA-568B 100 -ohm
100BASE-TX: 2-pair / 4-pair UTP Cat. 5, EIA/TIA-568B 100-ohm
Link distance: Up to 100 meters

Auto MDI/MDI-X Function

This function allows the port to auto-detect the twisted-pair signals and adapts itself to form a valid MDI to MDI-X connection with the remote connected device automatically. No matter a straight through cable or crossover cable connected, the ports can sense the receiving pair automatically and configure self to match the rule for MDI to MDI-X connection. It simplifies the cable installation by using only straight-through cables.

Auto-negotiation Function

The ports are featured with auto-negotiation function and full capability to support connection to any Ethernet devices. The port performs a negotiation process for the speed and duplex configuration with the connected device automatically when each time a link is being established. If the connected device is also auto-negotiation capable, both devices will come out the best configuration after negotiation process. If the connected device is incapable in auto-negotiation, the switch will sense the speed and use half duplex for the connection.

3.2 Making Fiber Connections

The fiber ports operate on 100 Mbps and full duplex. For different fiber connections, several alternative models can be selected for different fiber connections. The following figure illustrates a connection example between two SC fiber ports:

A variety of fiber options and the associated optical specifications are provided as listed in Appendix-1.

Network Cables

Multimode (MMF) - 50/125, 62.5/125
Single mode (SMF) - 9/125

3.3 LED Indication

KSD-103-A

LED	Function	State	Interpretation
PWR	Power status	ON	The power is supplied to the device.
		OFF	The power is not supplied to the device.
UTPx	Copper port link status	ON	Port link is established. (No traffic)
		BLINK	Port link is up and there is traffic.
	Fiber port link status	OFF	Port link is down.
		BLINK	Port link is established. (No traffic)
		OFF	Port link is is up and there is traffic.

4. Applications

4.1 Application in Industrial Networks

The following figure illustrates an application example in an industrial network. Four devices are cascaded by fiber cables.

4.2 Copper to Fiber Bridging Media Converter Application

4.3 Bridging Multimode to Single Mode Fiber Converter Application

Single Mode Fiber to Multimode Fiber Conversion

5. Appendix

5.1 Model Definition

KSD-103-A

Model Ext.	FX Connector	Cable	Ref. Distance	Operating Temperature
-T	Duplex ST	MMF	2 km	$-10 \sim 70^{\circ} \mathrm{C}$
-C	Duplex SC	MMF	2 km	$-10 \sim 70^{\circ} \mathrm{C}$
-C1	Duplex SC	MMF	2 km	$-20 \sim 70^{\circ} \mathrm{C}$
-SA2	Duplex SC	SMF	20 km	$-20 \sim 70^{\circ} \mathrm{C}$
- SL2	Duplex SC	SMF	20 km	$-20 \sim 70^{\circ} \mathrm{C}$
- SL3	Duplex SC	SMF	30 km	$-20 \sim 70^{\circ} \mathrm{C}$
-SL4	Duplex SC	SMF	40 km	$-20 \sim 70^{\circ} \mathrm{C}$
-SL6	Duplex SC	SMF	60 km	$-20 \sim 70^{\circ} \mathrm{C}$
-W3515	BiDi SC	SMF	$15 \sim 20 \mathrm{~km}$	$-20 \sim 70^{\circ} \mathrm{C}$
- W5315	BiDi SC	SMF	$15 \sim 20 \mathrm{~km}$	$-20 \sim 70^{\circ} \mathrm{C}$

KSD-103-B

Model Ext.	FX Ports	FX2 Connector	Cable	Ref. Distance	Operating Temperature
-T	FX1, FX2	Duplex ST	MMF	2 km	$-10 \sim 70^{\circ} \mathrm{C}$
-C	FX1, FX2	Duplex SC	MMF	2 km	$-10 \sim 70^{\circ} \mathrm{C}$
- C1	FX1, FX2	Duplex SC	MMF	2 km	$-20 \sim 70^{\circ} \mathrm{C}$
- SA2	FX1, FX2	Duplex SC	SMF	20 km	$-20 \sim 70^{\circ} \mathrm{C}$
- SL2	FX1, FX2	Duplex SC	SMF	20 km	$-20 \sim 70^{\circ} \mathrm{C}$
- SL3	FX1, FX2	Duplex SC	SMF	30 km	$-20 \sim 70^{\circ} \mathrm{C}$
-SL4	FX1, FX2	Duplex SC	SMF	40 km	$-20 \sim 70^{\circ} \mathrm{C}$
- SL6	FX1, FX2	Duplex SC	SMF	60 km	$-20 \sim 70^{\circ} \mathrm{C}$
- W3515	FX1, FX2	BiDi SC	SMF	$15 \sim 20 \mathrm{~km}$	$-20 \sim 70^{\circ} \mathrm{C}$
$-W 5315$	FX1, FX2	BiDi SC	SMF	$15 \sim 20 \mathrm{~km}$	$-20 \sim 70^{\circ} \mathrm{C}$
$-\mathrm{C} 1 S 12$	FX1	Duplex SC	MMF	2 km	$-20 \sim 70^{\circ} \mathrm{C}$
	FX2	Duplex SC	SMF	20 km	$-20 \sim 70^{\circ} \mathrm{C}$

5.2 Optical Specifications

KSD-103-A

Model Ext.	FX Port	Wavelength	TX Power	Sensitivity	RX Max. Power
$-T$	FX	1310 nm	$-19 \sim-14 \mathrm{dBm}$	-31 dBm	-14 dBm
-C	FX	1310 nm	$-19 \sim-14 \mathrm{dBm}$	-31 dBm	-14 dBm
-C 1	FX	1310 nm	$-20 \sim-14 \mathrm{dBm}$	-31 dBm	0 dBm
- SA2	FX	1310 nm	$-15 \sim-8 \mathrm{dBm}$	-31 dBm	-7 dBm
- SL2	FX	1310 nm	$-15 \sim-8 \mathrm{dBm}$	-30 dBm	0 dBm
- SL3	FX	1310 nm	$-15 \sim-8 \mathrm{dBm}$	-34 dBm	0 dBm
- SL4	FX	1310 nm	$-5 \sim 0 \mathrm{dBm}$	-34 dBm	0 dBm
- SL6	FX	1310 nm	$-5 \sim 0 \mathrm{dBm}$	-35 dBm	0 dBm
- W3515	FX	1310 nm	$-14 \sim-8 \mathrm{dBm}$	-31 dBm	0 dBm
- W5315	FX	1550 nm	$-14 \sim-8 \mathrm{dBm}$	-31 dBm	0 dBm

KSD-103-B

Model Ext.	FX Ports	Wavelength	TX Power	Sensitivity	RX Max. Power
$-T$	FX1, FX2	1310 nm	$-19 \sim-14 \mathrm{dBm}$	-31 dBm	-14 dBm
-C	FX1, FX2	1310 nm	$-19 \sim-14 \mathrm{dBm}$	-31 dBm	-14 dBm
-C 1	FX1, FX2	1310 nm	$-20 \sim-14 \mathrm{dBm}$	-31 dBm	0 dBm
- SA2	FX1, FX2	1310 nm	$-15 \sim-8 \mathrm{dBm}$	-31 dBm	-7 dBm
- SL2	FX1, FX2	1310 nm	$-15 \sim-8 \mathrm{dBm}$	-30 dBm	0 dBm
- SL3	FX1, FX2	1310 nm	$-15 \sim-8 \mathrm{dBm}$	-34 dBm	0 dBm
-SL4	FX1, FX2	1310 nm	$-5 \sim 0 \mathrm{dBm}$	-34 dBm	0 dBm
-SL6	FX1, FX2	1310 nm	$-5 \sim 0 \mathrm{dBm}$	-35 dBm	0 dBm
- W3515	FX1	1310 nm	$-14 \sim-8 \mathrm{dBm}$	-31 dBm	0 dBm
	FX2	1550 nm	$-14 \sim-8 \mathrm{dBm}$	-31 dBm	0 dBm
$-\mathrm{W} 5315$	FX1	1550 nm	$-14 \sim-8 \mathrm{dBm}$	-31 dBm	0 dBm
	FX2	1310 nm	$-14 \sim-8 \mathrm{dBm}$	-31 dBm	0 dBm
$-\mathrm{C} 1 \mathrm{Sl2}$	FX1	1310 nm	$-20 \sim-14 \mathrm{dBm}$	-31 dBm	0 dBm
	FX2	1310 nm	$-15 \sim-8 \mathrm{dBm}$	-30 dBm	0 dBm

